
Sky Labyrinth
PCG as a Driver for E�icient Level Design, Improved Usability, and Be�er Performance

Deniz S. Ozkaynak∗
Variance Creative Studios

Armonk, NY 10504
deniz@variancecs.com

ABSTRACT
Exhibits how we leveraged Procedurally Generated Content1 to
empower level designers, improve the end-user experience, and en-
able performance gains. Showcases internal tools built by Variance
Creative Studios developers, to convey one method of accessing
the power of PCG.

CCS CONCEPTS
•Applied computing→ Computer games; Media arts;

KEYWORDS
PCG, Object Pooling, Autorunner, Runner, Unity3D, Tools, JSON,
Level Design, Rapid Iterative Testing, Iteration

ACM Reference format:
Deniz S. Ozkaynak. 2017. Sky Labyrinth. In Proceedings of Foundations
of Digital Games Conference, Cape Cod, MA USA, August 2017 (FDG 2017),
4 pages.
DOI: 10.475/123 4

1 INTRODUCTION
PCG has long been used in game development and other applica-
tions. However as of late it has been a high pro�le phrase, o�en
used to market a game’s supposedly endless amount of exciting
replayable content that o�en becomes stale quickly. Or similarly, a
phrase used by managers and executives to cut corners and trim
budgets, calling for less artistic labor modeling, texturing, rigging
and lighting hundreds or thousands of objects. From the very be-
ginning of development we at VCS knew we need not worry about
algorithmically generating a plethora of content. What we needed
was the ability to create a game that was fun, unique, and scalable.
To develop Sky Labyrinth, we chose Unity3D as our engine chie�y
because of the team’s extensive experience with it and additionally
due to the signi�cant community support behind extending the
Editor to build great assets or tools.

∗Managing Partner, Lead Programmer
1PCG herea�er

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG 2017, Cape Cod, MA USA
© 2017 Copyright held by the owner/author(s). . . . $0.00
DOI: 10.475/123 4

2 BACKGROUND
We began2 by designing and prototyping over the course of 8
months - a small indie team working evenings and weekends. We
continuously iterated on the implementation of our core game de-
sign: an autorunner3 that allows the player to go in many directions,
rather than le� or right. Dubbed ”Omni-directional Runner”, while
the implementation details changed frequently, we remained true
to this simple high-level design. Upon arriving at a suitably fun and
playable implementation, based around solving mazes, we began
building out a simple tool to create content titledMazeGen. When
fed a number of prefabs4 (components of a maze) along with a
number of optional parameters, MazeGen instantiates a playable
maze. As we would later come to realize, this was the embryo that
would eventually grow into our suite of developer tools.

2.1 Game Overview
Overview of the look and feel of the game itself, somewhat impor-
tant context to understand the goal and bene�t of our approach to
PCG. Please skip ahead to Subsection 2.2 at your leisure.

Tag: Collect StratoSpheres, escape the labyrinth, or
be trapped in the sky forever!

Features:
• Vertical Progression - a�er beating each level, players see

an overhead view of the next maze as they fall toward it
• Mid-progression Controls - players can move mid-air, in�u-

encing where they land in the next level to avoid obstacles,
grab powerups, or optimize their route to solve the maze
quickly

• Hand-Cra�ed Content - 30+ mazes each with unique level
design, puzzles, and challenges

• Play on both desktop and mobile devices

2on July 1st, 2015
3a la Temple Run, Subway Surfers
4A Unity asset type that allows you to store a GameObject object complete with
components and properties. Acts as a template from which you can create instances
that inherit any edits made.

• No Level Loading Screen - Every time the game is launched,
players face just a single loading screen no ma�er how
long the play session

2.2 Tools Overview
Much like the previous subsection, provides somewhat important
context but please skip ahead to Section 3 at your leisure, or con-
sider watching this 2.5 minute video overview instead.

Figure 1: MazeGen.cs - before running
Accepts optional parameters such as dimensions, di�culty rating5,
the amount of each powerup to be randomly placed, where the
level’s Goal should be placed, and how many props to sprinkle

around the maze.

Figure 2: MazeGen.cs - a�er instantiation
Don’t like how this maze came out? Re-run the tool!

Figure 3: TileEditor.cs
Used to toggle walls on and o�, move the Goal, or place puzzles.

Figure 4: SubtileEditor.cs
Used to place individual pickups, powerup items, or obstacles.

Also used to move the Editor Flag (see Figure 7).

Figure 5: WallEditor.cs
Used to place Wall Saw obstacles or break sections of the wall.

Players can jump over broken wall sections, o�ering paths to avoid
certain obstacles or shorten the route to success.

Figure 6: PillarEditor.cs
Used to cycle pillar models and graphics.

Figure 7: EditorFlag.cs - based on the con�guration…
of the previous maze, this shows all possible cardinal directions the
player could be facing upon landing. Very useful when designing

levels, to prevent the frustration of landing and immediately
running into a wall. Designers are able to move and rotate the Flag

which automatically edits all previous mazes accordingly.
2

https://youtu.be/yz-AqA_Yy0M

Figure 8: Pool Party Tools - when a designer is happy…
with their maze changes, they use the ”Write” tool to save all
relevant data to JSON,6 then use the ”Delete” script to clear the
Scene of all poolable objects. Nearly emptying the Scene enables
faster load times7. When additional changes are needed, running
the ”Reinstantiate” script re-populates the Scene from JSON, ready

to edit!

Figure 9: Publishing - many targetted mobile devices can’t…
handle the quality of assets, materials, particle e�ects, and SFX
that desktop users can8. Certain camera e�ects are disabled, and
nearly every single material has 2 versions, where the mobile

version uses far more performant shaders. �ese tools
automatically swap the assigned material for dozens of prefabs
based on the target platform, making what would otherwise be a

painful process relatively straightforward.

Figure 10: SkyLabEditor - a custom Editor window used…
to interface with all these tools at once. Before we built this
window, tools were sca�ered about a�ached to separate

gameobjects or managers. As the suite of tools grew, collapsing
everything into a single Editor window expedited level design and

engineering tasks alike.

3 IMPACT
When it comes to enabling e�cient level design, the previous sec-
tion conveys howmuch time and e�ort can be savedwith automated
developer tools. Although we don’t have any hard numbers, it’s
easy to imagine how many more man-hours it would take to build
out mazes manually. We did do so a handful of times very early in
prototype development; it’s safe to say that the mediocre results of
many painstaking hours was a partial motivator for developing our
tools. Today, entire mazes can be designed on-the-�y and produc-
tion ready in a couple hours or less, as seen in this timelapse of a
design session where mazes 25 and 26 are built from scratch (and
27 is started) in 4 hours.

However the question remains: how do these tools impact end-
users and runtime performance?

3.1 Improved Usability
More e�cient design meant faster turnaround times on build re-
leases. For the majority of our closed alpha and open beta testing
periods we released builds on a weekly basis every Friday9, gather-
ing valuable feedback and feature requests. Over many months we
received hundreds of replies about bugs, opinions, implementation
ideas, and more! Unfortunately we did not have the resources to
systematically approach usability testing. In lieu of asking testers
to �ll out surveys and trying to track statistics over time, we kept
our ears low to the ground, so to speak. We interacted with the
community o�en and nearly every interaction warranted a team
discussion to some extent, leading to an assignment ticket being
created, a feature being added, or a bug-�x expedited.

With time, Sky Labyrinth evolved from this buggy alpha10 to
a functional beta11. Disregarding the obvious changes in art di-
rection, there’s a noticeable di�erence in playability. If we look
further down the road, here we see12 a more mature version of the
beta with many minor improvements. �ese re�nements, such as
smooth camera behavior13 had been overlooked for a long time
by our team14. One huge bene�t of frequent release cycles was
ge�ing fresh eyes on our builds to identify overlooked areas for
improvement. However the most impactful bene�t actually came
from our so-called power users; other game developers that took
the time to write mountains of feedback on everything from minute
details to huge implementation suggestions. For example /u/inter-
estingsystems recently gave a feature suggestion that in retrospect
we desperately needed:

May I suggest that when the player turns the character
into a wall and falls down, the game automatically re-
aligns them back along a path when they get back to
their feet. As a beginner it was frustrating to fall multiple
times and then die as I was fumbling to get the hang of
tapping at the right time to get back on track.

9for /r/gamedev’s Feedback Friday thread on Reddit!
10Hyperlink to a GIF of an early alpha build
11A GIF of a more stable beta, not without its issues though
12A blog post showing a number of features or �xes via GIFs
13which came about only because certain users pointed out the jarring e�ect of a
shi�ing �eld-of-view
14We had play-tested the game daily for so long, our eyes had become more than
adjusted to li�le nuisances such as these

3

https://youtu.be/1S1ufGxQ2Fo
https://gfycat.com/BoilingSilverColt
https://gfycat.com/JoyousBruisedGalago
http://variancecs.com/blog/2016/11/19/new-autorunner-camera-system/
https://www.reddit.com/r/gamedev/comments/6ae29z/wip_wednesday_49_arbeid_p%C3%A5_g%C3%A5r/dhetprj/

Failure had become a frustrating experience that we had ap-
proached with a number of di�erent changes and tweaks, but this
user’s suggestion of an automated rotation a�er failure was far and
away the most e�ective at eliminating frustration and ge�ing users
back to the fun. Although power-users like these are extremely
appreciated and respected15 there is one we have dubbed ”�e King
of Feedback”.

In March of 2016, /u/Saiodin went far above what anyone could
ever hope or ask for. In addition to writing dozens of feedback
paragraphs, this user created an animated GIF and later built an
Unreal Engine 4 project to demonstrate a concept he was suggesting
we implement. �is directly altered our core movement system;
although not fast or easy, refactoring our work led to far be�er
performance and smoother gameplay.

Much further down the road, nearing today’s version of the
game, we continued receiving superb suggestions such as the addi-
tion of visual feedback16 or this switch from a HUD element to a
diegetic UI to represent one of the player’s in-game resources.

3.2 Performance Gains
�is section won’t cover the general gains of implementing Object
Pooling and PCG, as this design principle’s pros and cons have
already been well documented [1–4] in that regard. What we will
cover is how editor-time tools can impact runtime performance, and
to what degree.

3.3 Need More Tools
Early on in development, MazeGen was our only tool. However
much like inheritance17, over time many other programs were
wri�en based on MazeGen’s design and implementation. Some
tools were created to edit individual components of a maze and
it’s inhabitants, while others created to translate design work in-
editor into poolable data. Other tools were created to assist with
debugging, recon�guring assets for certain platforms, and toggling
features.

Each time we added prefabs to the list of poolable gameobjects,
initial Scene loading time decreased slightly while disk usage in-
creased by only a few hundred bytes. While a large object pool can
have the downside of an initial 1 - 2 second spike in processing
consumption during pool initialization, this is easily hidden behind
our loading screen. At runtime performance hums, the construction
and recycling of massive and complex mazes is unnoticeable to the
player. Because we didn’t need to consider the costs of creating new
objects and collecting garbage, we were freed to focus engineering
e�orts elsewhere when time came for optimization and frame-rate
centric development.

For mobile platforms, when more performant materials were
swapped in the gains were huge, improving from barely playable
on 2015 - 2016 devices to running well.

3.4 Disk Storage
As mentioned above, the more objects we decided to pool, the more
disk space we needed to use on an end-user’s device. Additionally

15each power appears in our in-game credits with a direct link to their feedback
16for when the player is slowed by enemies
17the design pa�ern, not the passing on of wealth

certain objects, like obstacles with node-based pathing AI, need
much more data saved than simply position, rotation, and scale.
However even with a very complex, large maze, populated with
plenty of entities, these storage �les are under 50KB/maze on aver-
age and none over 75KB (yet!) �e entire level design of over 30
mazes is stored on 1.5MB, a drop in the bucket for modern devices.

3.5 �e Hidden Cost
With each new tool added, we coupled our systems further. In retro-
spect, much like inheritance, we ran into unnecessary coupling and
an analogous version of the fragile base class problem. Although
no tools actually inherited from MazeGen, its in�uence on their
design and implementation acted like a base class. Because of this,
and the tight coupling of components, making modi�cations to
MazeGen or other important tools o�en led to unintended behav-
ioral changes18. �is should come as li�le surprise to the reader,
but in retrospect designing the tools ecosystem from the ground
up would have been e�ective and counteracting these problems.
Rather than organically grow the suite of tools over time, based
on needs of the team, a systematic approach to tools development
would have saved countless man-hours. But alas, we had no idea
we would need or develop all of these wonderful programs to aide
our production when we began in 2015.

4 CONCLUSIONS
Admi�edly the performance gains detailed are not earth sha�ering
or contemporary; the bene�ts of PCG and pooling have long since
been known and used. However, the real power comes from the
duality of these tools. While making the task of designing and
instantiating huge amounts of game content simple and e�cient,
they also provide well-known performance bene�ts. Although this
suite of tools was not without its costs, if a team were to approach
game development with the goal of building this type of ecosystem,
suddenly certain costs can be greatly diminished. Easier said than
done perhaps, something we very much intend to �nd out as we
continue building games as Variance Creative Studios.

ACKNOWLEDGMENTS
�e author would like to thank:

• Tyler Hiemke, for his contributions to MazeGen and other
tools

• Ronald Mraz, for his game design expertise, incredible
sound design, and 2 year dedication to the project.

• all of our brilliant alpha and beta testers

REFERENCES
[1] Jasper Flick. Object Pools. Catlike Coding. h�p://catlikecoding.com/unity/

tutorials/object-pools/.
[2] Kevin Ho�man. 2005. Pro ADO.NET with VB .NET 1.1. Apress, Berkeley, Califor-

nia.
[3] Microso�. 2017. Improving Performance with Object Pooling. Microso�. h�ps://

msdn.microso�.com/en-us/library/windows/desktop/ms682822(v=vs.85).aspx.
[4] Peter Veentjer. 2010. Java Extreme Performance: Part 2 � Object pooling. h�p:

//www.ctan.org/pkg/booktabs.

18bugs
4

https://www.reddit.com/r/gamedev/comments/4awrcx/feedback_friday_177_indie_highlights/d165pml/
http://i.imgur.com/x4H3MBL.gif
https://www.youtube.com/watch?v=kYpVaT-y5NE
https://www.youtube.com/watch?v=kYpVaT-y5NE
https://gfycat.com/ThickAnguishedFly
https://gfycat.com/PoorMeatyIndochinesetiger
https://gfycat.com/PoorMeatyIndochinesetiger
https://gfycat.com/IndelibleBackIndochinahogdeer
http://catlikecoding.com/unity/tutorials/object-pools/
http://catlikecoding.com/unity/tutorials/object-pools/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682822(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682822(v=vs.85).aspx
http://www.ctan.org/pkg/booktabs
http://www.ctan.org/pkg/booktabs

	Abstract
	1 Introduction
	2 Background
	2.1 Game Overview
	2.2 Tools Overview

	3 Impact
	3.1 Improved Usability
	3.2 Performance Gains
	3.3 Need More Tools
	3.4 Disk Storage
	3.5 The Hidden Cost

	4 Conclusions
	Acknowledgments
	References

